来自孔岚的问题
圆O为单位圆,P为X轴正半轴上一点,作PA,PB为圆O的切线,求向量PA•向量PB的最小值
圆O为单位圆,P为X轴正半轴上一点,作PA,PB为圆O的切线,求向量PA•向量PB的最小值
1回答
2020-05-08 15:36
圆O为单位圆,P为X轴正半轴上一点,作PA,PB为圆O的切线,求向量PA•向量PB的最小值
圆O为单位圆,P为X轴正半轴上一点,作PA,PB为圆O的切线,求向量PA•向量PB的最小值
切线与切半径垂直|PA|=√(PO^2-1)|PB|=√(PO^2-1)∴|PA|*|PB|=PC^2-1cos=1-2sin^2∠OPA=1-2/PC^2(余弦二倍角公式)向量PA•向量PB=(PC^2-1)(1-2/PC^2)=PC^2+2/PC^2-3≥2√2-3(均值不等式)最小值2√2-3如果...