数列xn由下列条件确定:x1=a>0,x(n+1)=1/2(-查字典问答网
分类选择

来自谷震离的问题

  数列xn由下列条件确定:x1=a>0,x(n+1)=1/2(xn+2/xn),n∈N.若数列xn的极限存在且大于0,求limxn答案是√a,为什么?

  数列xn由下列条件确定:x1=a>0,x(n+1)=1/2(xn+2/xn),n∈N.若数列xn的极限存在且大于0,求limxn

  答案是√a,为什么?

1回答
2020-05-08 16:00
我要回答
请先登录
李文芳

  其实有个很简单的方法.因为x(n+1)=1/2(xn+2/xn)且数列极限存在,所以会有limx(n+1)=lim[1/2(xn+2/xn)]即limx(n+1)=1/2(limxn+2/limxn)同时根据极限的定义,显然有limx(n+1)=limxn所以可以代入进去就可以解出limx(n)=根...

2020-05-08 16:02:12

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •