有规律的实对称矩阵如何能够确定非负特征值个数B=-0.37500.75000.6250-0.3750-0.2500-0.3750-0.3750-0.25000.62500.7500-0.16670.7500-0.2500-0.1667-0.2500-0.2500-0.1667-0.25
有规律的实对称矩阵如何能够确定非负特征值个数
B=
-0.37500.75000.6250-0.3750-0.2500-0.3750-0.3750-0.25000.6250
0.7500-0.16670.7500-0.2500-0.1667-0.2500-0.2500-0.1667-0.2500
0.62500.7500-0.37500.6250-0.2500-0.3750-0.3750-0.2500-0.3750
-0.3750-0.25000.6250-0.37500.75000.6250-0.3750-0.2500-0.3750
-0.2500-0.1667-0.25000.7500-0.16670.7500-0.2500-0.1667-0.2500
-0.3750-0.2500-0.37500.62500.7500-0.37500.6250-0.2500-0.3750
-0.3750-0.2500-0.3750-0.3750-0.25000.6250-0.37500.75000.6250
-0.2500-0.1667-0.2500-0.2500-0.1667-0.25000.7500-0.16670.7500
0.6250-0.2500-0.3750-0.3750-0.2500-0.37500.62500.7500-0.3750
0.6250-0.2500-0.3750-0.3750-0.2500-0.37500.62500.7500-0.3750
如矩阵B,可知分块格式为
LMN
NLM
MNL形式.
非负个数就等于重复块的个数,这里是3.
例如另外一个阶次的分块格式为:
KLMN
NKLM
MNKL
LMNK形式.
非负个数就等于重复块的个数,这里是4.
可以看出是有规律的,非负特征值的个数就等于重复块的个数.
想问一下这种类型的矩阵特征值非负个数怎么确定?有什么定理还是规定?