来自邵瑞华的问题
【已知,在△ABC中,AB=AC,D是BC边的中点,P是AD上任意一点,PE⊥AB于E,PF⊥AC于F.试说明:(1)PE=PF;(2)PB=PC.】
已知,在△ABC中,AB=AC,D是BC边的中点,P是AD上任意一点,PE⊥AB于E,PF⊥AC于F.试说明:(1)PE=PF;(2)PB=PC.
1回答
2020-05-10 17:11
【已知,在△ABC中,AB=AC,D是BC边的中点,P是AD上任意一点,PE⊥AB于E,PF⊥AC于F.试说明:(1)PE=PF;(2)PB=PC.】
已知,在△ABC中,AB=AC,D是BC边的中点,P是AD上任意一点,PE⊥AB于E,PF⊥AC于F.试说明:(1)PE=PF;(2)PB=PC.
证明:(1)∵AB=AC,D是BC边的中点,
∴AD平分∠BAC,
又∵PE⊥AB于E,PF⊥AC于F,
∴PE=PF;
(2)∵AB=AC,D是BC边的中点,
∴AD垂直BC,
即AD垂直平分BC,
又∵P是AD上任意一点,
∴PB=PC.