来自孙淑琴的问题
在平面直角坐标系中,点P是抛物线C:y=ax2在第一象限内上的一点,连接OP,过点O作OP的垂线交抛物线于另一点Q,连接PQ,交y轴于点M.(1)如图1,若PQ∥x轴,且PQ=2,求抛物线C的解析式;(
在平面直角坐标系中,点P是抛物线C:y=ax2在第一象限内上的一点,连接 OP,过点O作OP的垂线交抛物线于另一点Q,连接PQ,交y轴于点M.
(1)如图1,若PQ∥x轴,且PQ=2,求抛物线C的解析式;
(2)如图2,过点P作PA丄x轴于点A,设点P的横坐标为m.
①用含m的代数式表示点Q的横坐标为-1a2m
-1a2m
;
②连接AM,求证:AM∥OQ;
(3)如图3,将抛物线C:y=ax2作关于x轴的轴对称变换,然后平移经过P,Q两点得到抛物线C′,设抛物线C′的顶点为R,判断四边形OPRQ的形状?
1回答
2020-05-12 05:13