【已知函数f(x)满足f(x+y)=f(x)•f(y)(x、y∈R)且f(1)=12,(1)当n∈N+时,求f(n)的表达式;(2)设an=n•f(n),n∈N+,若Sn=a1+a2+a3+…+an,求证Sn<2(3)设bn=n•f(n+1)f(n)(n∈N+),Tn为】
已知函数f(x)满足f(x+y)=f(x)•f(y)(x、y∈R)且f(1)=12,
(1)当n∈N+时,求f(n)的表达式;
(2)设an=n•f(n),n∈N+,若Sn=a1+a2+a3+…+an,求证Sn<2
(3)设bn=n•f(n+1)f(n)(n∈N+),Tn为{bn}的前n项和,求1T1+1T2+1T3+…+1Tn.