设函数z=f(u),方程u=φ(u)+∫xyp(t)dt确定-查字典问答网
分类选择

来自李亚波的问题

  设函数z=f(u),方程u=φ(u)+∫xyp(t)dt确定u是x,y,其中f(u),φ(u)可微;p(t),φ′(u)连续,且φ′(u)≠1.求p(y)∂z∂x+p(x)∂z∂y.

  设函数z=f(u),方程u=φ(u)+∫x

  y

  p(t)dt确定u是x,y,其中f(u),φ(u)可微;p(t),φ′(u)连续,且φ′(u)≠1.求p(y)∂z∂x+p(x)∂z∂y.

1回答
2020-05-13 00:46
我要回答
请先登录
蔡志浩

  ∵∂z∂x=f′(u)∂u∂x,∂z∂y=f′(u)∂u∂y而u=φ(u)+∫xyp(t)dt两边对x求偏导得:∂u∂x=φ′(u)∂u∂x+p(x)两边对y求偏导得:∂u∂y=φ′(u)∂u∂y−p(y)∴∂u∂x=p(x)1−φ′(u)∂u∂y=−p(y)1−φ′(u)...

2020-05-13 00:49:13

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •