梯形abcd,ad平行于bc,对角线ac.db相较于点o,S-查字典问答网
分类选择

来自孙新的问题

  梯形abcd,ad平行于bc,对角线ac.db相较于点o,S三角形acd:S三角形=1:3,求S三角形aod:S三角形boc=?加急……

  梯形abcd,ad平行于bc,对角线ac.db相较于点o,S三角形acd:S三角形=1:3,求S三角形aod:S三角形boc=?

  加急……

1回答
2020-05-14 07:47
我要回答
请先登录
石晶林

  ∵△AOD和△ACD是以D为顶点,AO和AC为底的两个同高三角形,且S△AOD:S△ACD=1:3,

  ∴AO:AC=1:3(两个同高的三角形的面积之比等于两高对应的两底之比).

  ∴AO:OC=1:2.

  ∵AD‖BC,

  ∴∠ADO=∠CBO(两直线平行,内错角相等).

  ∵∠AOD=∠COB(对顶角相等),

  ∴△AOD∽△COB(两角对应相等的两个三角形相似).

  ∴S△AOD:S△COB=(AO^2):(OC^2)(相似三角形面积比等于对应边的平方比).

  ∴S△AOD:S△COB=1:4.

  本题是利用相似三角形来求值的题目,关键是确定要证明哪两个三角形相似.例如本题中欲求S△AOD:S△COB的值通过得出△AOD∽△COB得到S△AOD:S△COB=(AO^2):(OC^2)从而建立起已知待求之间的关系.证明两三角形相似我们通常有以下5种方法:

  (1)定义法:对应角相等,对应边成比例的两个三角形相似;

  (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

  (3)判定定理1:两角对应相等的两个三角形相似;

  (4)判定定理2:两边对应成比例且夹角相等,两个三角形相似;

  (5)判定定理3:三边对应成比例的两个三角形相似.

  在本题中我们就是利用“两角对应相等的两个三角形相似”得到△AOD∽△COB.

  解数学题的关键是要在做题中善于从概念出发及时总结与抽象,并能举一反三,触类旁通

2020-05-14 07:50:24

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •