【十字相乘法的运算方法】-查字典问答网
分类选择

来自韩军良的问题

  【十字相乘法的运算方法】

  十字相乘法的运算方法

2回答
2020-05-14 21:18
我要回答
请先登录
郭星廷

  ——借助画十字

  分解系数,从而把二次三项式分解

  的方法叫做

  .

  是二次三项式分解

  的一种常用方法,它是先将二次三项式的

  a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)

  然后按斜线交叉相乘、再相加,若有,则有,否则,需交换的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止.

  在我们做

  分解题时,可以参照下面的口诀:

  首先提取公因式,然后考虑用公式;

  十字相乘试一试,分组分得要合适;

  四种方法反复试,最后须是连乘式.

  十字相乘法解题实例:

  1)、用十字相乘法解一些简单常见的题目

  例1把m²+4m-12分解因式

  分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题

  因为1-2

  1╳6

  所以m²+4m-12=(m-2)(m+6)

  例2把5x²+6x-8分解因式

  分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当

  分为1×5,常数项分为-4×2时,才符合本题

  因为12

  5╳-4

  所以5x²+6x-8=(x+2)(5x-4)

  例3解方程x²-8x+15=0

  分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.

  因为1-3

  1╳-5

  所以原方程可变形(x-3)(x-5)=0

  所以x1=3x2=5

  例4、解方程6x²-5x-25=0

  分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.

  因为2-5

  3╳5

  所以原方程可变形成(2x-5)(3x+5)=0

  所以x1=5/2x2=-5/3

  2)、用十字相乘法解一些比较难的题目

  例5把14x²-67xy+18y²分解因式

  分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y,2y.9y,3y.6y

  解:因为2-9y

  7╳-2y

  所以14x²-67xy+18y²=(2x-9y)(7x-2y)

  例6把10x²-27xy-28y²-x+25y-3分解因式

  分析:在本题中,要把这个

  整理成二次三项式的形式

  解法一、10x²-27xy-28y²-x+25y-3

  =10x²-(27y+1)x-(28y²-25y+3)4y-3

  7y╳-1

  =10x²-(27y+1)x-(4y-3)(7y-1)

  =[2x-(7y-1)][5x+(4y-3)]2-(7y–1)

  5╳4y-3

  =(2x-7y+1)(5x+4y-3)

  说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y-1),再用十字相乘法把10x²-(27y+1)x-(4y-3)(7y-1)分解为[2x-(7y-1)][5x+(4y-3)]

  解法二、10x²-27xy-28y²-x+25y-3

  =(2x-7y)(5x+4y)-(x-25y)-32-7y

  =[(2x-7y)+1][(5x-4y)-3]5╳4y

  =(2x-7y+1)(5x-4y-3)2x-7y1

  5x-4y╳-3

  说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x-7y)(5x+4y),再把(2x-7y)(5x+4y)-(x-25y)-3用十字相乘法分解为[(2x-7y)+1][(5x-4y)-3].

  例7:解关于x方程:x²-3ax+2a²–ab-b²=0

  分析:2a²–ab-b²可以用十字相乘法进行因式分解

  x²-3ax+2a²–ab-b²=0

  x²-3ax+(2a²–ab-b²)=0

  x²-3ax+(2a+b)(a-b)=01-b

  2╳+b

  [x-(2a+b)][x-(a-b)]=01-(2a+b)

  1╳-(a-b)

  所以x1=2a+bx2=a-b

2020-05-14 21:22:45
郭星廷

  网上打只能这样呢亲~~不好意思哈

2020-05-14 21:26:38

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •