导数的性质函数g(x)=e^xf(x)的导数为什么是e^x(f(x)+f'(x))
导数的性质
函数g(x)=e^xf(x)的导数为什么是e^x(f(x)+f'(x))
导数的性质函数g(x)=e^xf(x)的导数为什么是e^x(f(x)+f'(x))
导数的性质
函数g(x)=e^xf(x)的导数为什么是e^x(f(x)+f'(x))
导数是微积分中的重要概念.编辑本段导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.在一个函数存在导数时,称这个函数可导或者可微分.可导的函数一定连续.不连续的函数一定不可导.
导数另一个定义:当x=x0时,f‘(x0)是一个确定的数.这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivativefunction)(简称导数).
y=f(x)的导数有时也记作y',即f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示.如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性.
以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化.为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”.有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一.
注意:1.f'(x)0且a不等于1)
补充一下.上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意.
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/v^2
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则.
导数是微积分的一个重要的支柱.牛顿及莱不苨茨对次做出了卓越的贡献!导数公式及证明编辑本段这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数)y'=0
2.y=x^ny'=nx^(n-1)
3.y=a^xy'=a^xlna
y=e^xy'=e^x
4.f(x)=logaXf'(x)=1/xlna(a>0且a不等于1,x>0)
y=lnxy'=1/x
5.y=sinxy'=cosx
6.y=cosxy'=-sinx
7.y=tanxy'=1/(cosx)^2
8.y=cotxy'=-1/(sinx)^2
9.y=arcsinxy'=1/√1-x^2
10.y=arccosxy'=-1/√1-x^2
11.y=arctanxy'=1/(1+x^2)
12.y=arccotxy'=-1/(1+x^2)
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0.
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况.在得到y=e^xy'=e^x和y=lnxy'=1/x这两个结果后能用复合函数的求导给予证明.
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算.由设的辅助函数可以知道:⊿x=loga(1+β).
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当⊿x→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna.
把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna.
可以知道,当a=e时有y=e^xy'=e^x.
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x.
可以知道,当a=e时有y=lnxy'=1/x.
这时可以进行y=x^ny'=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx?(nlnx)'=x^n?n/x=nx^(n-1).
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)?lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosxy'=-sinx.
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny