来自陈业斌的问题
【设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dzdx.】
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dzdx.
1回答
2020-05-15 11:18
【设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dzdx.】
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dzdx.
因为y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数等式z=xf(x+y)两边对x求导得:dzdx=[xf(x+y)]'=f(x+y)+xf'(x+y)(x+y)'=f(x+y)+xf'(x+y)(1+dydx)即:dzdx=f(x+y)+xf'(x+y...