证明题:已知△ABC的各条边为a,b,c,外接圆半径为R求证-查字典问答网
分类选择

来自陈绍凤的问题

  证明题:已知△ABC的各条边为a,b,c,外接圆半径为R求证:(a²+b²+c²)(1/(sinA)²+1/(sinB)²+1/(sinC)²)>=36R²

  证明题:已知△ABC的各条边为a,b,c,外接圆半径为R

  求证:(a²+b²+c²)(1/(sinA)²+1/(sinB)²+1/(sinC)²)>=36R²

1回答
2020-05-16 13:22
我要回答
请先登录
陈静

  证明:

  根据不等到式:a^3+b^3+c^3≥3abc,(a>0,b>0,c>0).

  则有:(a²+b²+c²)≥3*(abc)^(2/3),

  1/(sinA)²+1/(sinB)²+1/(sinC)²

  =4R^2/a^2+4R^2/b^2+4R^2/c^2

  ≥3*(4R^2)*[1/(abc)^(2/3)],

  (a²+b²+c²)(1/(sinA)²+1/(sinB)²+1/(sinC)²)

  ≥[3*(abc)^(2/3)]*{3*(4R^2)*[1/(abc)^(2/3)]}=9*4R^2=36R^2.

  即,(a²+b²+c²)(1/(sinA)²+1/(sinB)²+1/(sinC)²)>=36R²,成立.

2020-05-16 13:23:27

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •