来自黄海新的问题
【点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=12∠A,BP、CP的延长线交AC、AB于D、E,求证:BE=CD.】
点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=12∠A,BP、CP的延长线交AC、AB于D、E,求证:BE=CD.
1回答
2020-05-16 23:46
【点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=12∠A,BP、CP的延长线交AC、AB于D、E,求证:BE=CD.】
点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=12∠A,BP、CP的延长线交AC、AB于D、E,求证:BE=CD.
证明:作BF⊥CE于F点,CM⊥BD于M点
则∠PFB=∠PMC=90°.
∵PG是BC的垂直平分线,∴PB=PC.
在△PBF和△PCM中,
∠PFB=∠PMC∠BPF=∠CPMPB=PC