来自董超俊的问题
定义:在三角形所在的平面上任作一条直线,若该直线将这个三角形分割成两部分,且分割后至少有一部分与原三角形相似,则这条直线叫做这个三角形的相似分割线.(1)如图1,在△ABC
定义:在三角形所在的平面上任作一条直线,若该直线将这个三角形分割成两部分,且分割后至少有一部分与原三角形相似,则这条直线叫做这个三角形的相似分割线.
(1)如图1,在△ABC中,已知∠ACP=∠B,则直线CP就是△ABC的相似分割线.
①若∠A=90°,请在图1中作出过点P的△ABC的其余的相似分割线;
②如图2,在△ABC中,若直线CF是△ABC过点C的相似分割线,点P在线段AF(包含点F、不包含点A)上运动,请写出△ABC的过点P的所有相似分割线的条数.
(2)如图3,△ABC是⊙O的内接三角形,H、G是⊙O上不同的两点,B是
AH的中点,C是
AG的中点,且AG、AH分别交BC于点D、E两点.
①求证:AG和AH都是△ABC的相似分割线;
②如果AE、AD恰好又是△ABD和△ACE的相似分割线,试说明:此时D、E两点刚好是BC边上的黄金分割点.
1回答
2020-05-18 11:46