来自沈熙的问题
A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.为什么r(A)=2,可得-2为二重根?
A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.
为什么r(A)=2,可得-2为二重根?
1回答
2020-05-18 10:48
A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.为什么r(A)=2,可得-2为二重根?
A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.
为什么r(A)=2,可得-2为二重根?
这是因为"可对角化的矩阵的秩等于其非零特征值的个数"
A是实对称矩阵,A(A+2E)=0,故A的特征值只能是0,-2
由r(A)=2知A的特征值为0,-2,-2.
所以A^2+3E的特征值为(λ^2+3):3,7,7
所以|A^2+3E|=3*7*7=147.