来自刘子立的问题
设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB,如果△AMD的面积为1,试求能够放入这个棱锥的最大球的半径.
设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB,如果△AMD的面积为1,试求能够放入这个棱锥的最大球的半径.
1回答
2020-05-18 12:42
设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB,如果△AMD的面积为1,试求能够放入这个棱锥的最大球的半径.
设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB,如果△AMD的面积为1,试求能够放入这个棱锥的最大球的半径.
∵AB⊥AD,AB⊥MA,
∴AB⊥平面MAD,
由此,面MAD⊥面AC.
记E是AD的中点,从而ME⊥AD.
∴ME⊥平面AC,ME⊥EF.
设球O是与平面MAD、平面AC、平面MBC都相切的球.
不妨设O∈平面MEF,于是O是△MEF的内心.
设球O的半径为r,则r=2S