1平方2平方3平方4平方5平方6平方7平方8平方9平方10平-查字典问答网
分类选择

来自陈显锋的问题

  1平方2平方3平方4平方5平方6平方7平方8平方9平方10平方怎么算的.

  1平方2平方3平方4平方5平方6平方7平方8平方9平方10平方怎么算的.

1回答
2020-05-19 16:27
我要回答
请先登录
郭斯淦

  (梅文鼎证明)作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180°―90°=90°又∵AB=BE=EG=GA=c,∴ABEG是一个边长为c的正方形.∴∠ABC+∠CBE=90°∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90°即∠CBD=90°又∵∠BDE=90°,∠BCP=90°,BC=BD=a.∴BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则∴BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2(项明达证明)作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可证RtΔQNF≌RtΔAEF.即a^2+b^2=c^2(赵浩杰证明)作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直线上,∵CJ=CF=a,CB=CD=c,∠CJB=∠CFD=90°,∴RtΔCJB≌RtΔCFD,同理,RtΔABG≌RtΔADE,∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE∴∠ABG=∠BCJ,∵∠BCJ+∠CBJ=90°,∴∠ABG+∠CBJ=90°,∵∠ABC=90°,∴G,B,I,J在同一直线上,所以a^2+b^2=c^2(欧几里得证明)作三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积=.同理可证,矩形MLEB的面积=.∵正方形ADEB的面积=矩形ADLM的面积+矩形MLEB的面积∴即a的平方+b的平方=c的平方欧几里得的证法在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立.设△ABC为一直角三角形,其中A为直角.从A点划一直线至对边,使其垂直于对边上的正方形.此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等.在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等.(SAS定理)三角形面积是任一同底同高之平行四边形面积的一半.任意一个正方形的面积等于其二边长的乘积.任意一个四方形的面积等于其二边长的乘积(据辅助定理3).证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形.其证明如下:设△ABC为一直角三角形,其直角为CAB.其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH.画出过点A之BD、CE的平行线.此线将分别与BC和DE直角相交于

2020-05-19 16:28:44

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •