解高中立体几何的方法如:证明线面平行想到三角形中位线和证明平-查字典问答网
分类选择

来自卢艳玲的问题

  解高中立体几何的方法如:证明线面平行想到三角形中位线和证明平行四边形法,那么证面面平行、面面垂直、线面垂直等要首先想到什么方法,算棱锥的体积,除了换顶点还有什么方法,还有异

  解高中立体几何的方法

  如:证明线面平行想到三角形中位线和证明平行四边形法,那么证面面平行、面面垂直、线面垂直等要首先想到什么方法,算棱锥的体积,除了换顶点还有什么方法,还有异面角怎么算

1回答
2020-05-20 06:00
我要回答
请先登录
彭定

  1,平面外直线和平面内的一条直线平行由平面外直线平行于这个平面.这是由线线平行到线面平行

  2,一条直线平行于一个平面,过这条直线的平面和已知平面相交,则这条直线平行于两个平面的交线,这是线面平行到线线平行

  3,一个平面内的两条相交直线分别和另一个平面平行,则这两个平面平行,这是线面平行到面面平行

  4,两个平面平行,第三个平面和它们相交,则交线平行,这是面面平行到线面平行

  在具体运用中可根据题设条件进行相互转化.

  5,一条直线和平面内的两条相交直线都垂直,则这条直线和这个平面垂直.这是由线线垂直到线面垂直

  6,一条直线和一个平面垂直,则这条直线和这个平面内的所有直线都垂直,这是由线面垂直到线线垂直

  7,一条直线和一个平面垂直,则经过这条直线和平面和已知平面垂直,这是由线面垂直到面面垂直

  8,两个平面互相垂直,其中一个平面内的一条直线垂直于交线,则这条直线垂直于另一个平面,这是由面面垂直到线面垂直,也到线线垂直,这一条包含了两条,即由面面垂直到线面垂直,也由面面垂直到线线垂直.

  在应用时,平行和垂直的判定定和性质定理要结合起来,才能在做题时灵活转化.

2020-05-20 06:01:30

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •