一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样-查字典问答网
分类选择

来自涂小行的问题

  一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它的三边长;若不存在,请说明理由.

  一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它的三边长;若不存在,请说明理由.

1回答
2020-05-21 01:51
我要回答
请先登录
黄文恺

  解这个直角三角形的三条边分别是:a,b,根号(a^2+b^2)

  由题意可以知道,1/2ab=a+b+根号(a^2+b^2).

  即:根号(a^2+b^2)=1/2ab-(a+b),将其两边平方得,

  a^2+b^2=1/4a^2b^2-ab(a+b)+a^2+b^2+2ab

  1/4a^2b^2-ab(a+b)+2ab=0

  ab(1/4ab-a-b+2)=0,因为ab≠0,

  所以,1/4ab-a-b+2=0

  ab-4a-4b+8=0

  a(b-4)=4b-8

  a=(4b-8)/(b-4)=(4b-16+8)/(b-4)=4+8/(b-4)

  因为三角形的三边都是整数,而8有四个约数:1,2,4,8,所以,b的取值有四种情况.即:5,6,8,12.下面分别讨论:

  1、b=5,a=12,此时,斜边是13,面积是1/2*5*12=30,周长是:5+12+13=30,符合要求.

  2、b=6,a=8,斜边是10,面积与周长都是24.

  3、b=8,a=6,这与上面2中的情况实质是一样的.

  4、b=12,a=5,这与1中的情况又完全相同.

  综上所述,符全要求的三角形有两种情况.

  三边分别是:

  5,12,13;

  6,8,10.

2020-05-21 01:53:25

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •