【1.[(3√2)-(2√3)]^2-[(3√2)+2√3)-查字典问答网
分类选择

来自马鹏宇的问题

  【1.[(3√2)-(2√3)]^2-[(3√2)+2√3)]^22.√3÷√2×(14/3-√2)-(√24+√12)3.化简:[(a-2√ab+b)/√a-√b]-(√a+√b)4.已知a-b=2+√3,b-c=2-√3,求代数式a^2+b^2+c^2-ab-bc-ca的值.5.设n是自然数,且x>1,比较(√n+1)-√n和√n-(√】

  1.[(3√2)-(2√3)]^2-[(3√2)+2√3)]^2

  2.√3÷√2×(14/3-√2)-(√24+√12)

  3.化简:[(a-2√ab+b)/√a-√b]-(√a+√b)

  4.已知a-b=2+√3,b-c=2-√3,求代数式a^2+b^2+c^2-ab-bc-ca的值.

  5.设n是自然数,且x>1,比较(√n+1)-√n和√n-(√n-1)的大小

1回答
2020-05-20 08:28
我要回答
请先登录
陈云亮

  1.[(3√2)-(2√3)]^2-[(3√2)+2√3)]^2

  =-4(3√2)(2√3)

  =-24√6

  2.√3÷√2×(14/(3-√2)-(√24+√12)

  =√(3/2)*14(3+√2)/[(3-√2)(3+√2)]-2√6-2√3

  =√6/2*(6+2√2)-2√6-2√3

  =3√6+2√3-2√6-2√3

  =√6

  3.化简:[(a-2√ab+b)/√a-√b]-(√a+√b)

  =(√a-√b)^2/(√a-√b)-(√a+√b)

  =(√a-√b)-(√a+√b)

  =-2√b

  4.已知a-b=2+√3,b-c=2-√3,求代数式

  a^2+b^2+c^2-ab-bc-ca的值.

  a^2+b^2+c^2-ab-bc-ca

  =1/2[(a-b)^2+(b-c)^2+(c-a)^2]

  =1/2[(a-b)^2+(b-c)^2+(a-b+b-c))^2]

  =1/2*[(2+√3)^2+(2-√3)^2+(2+√3+2-√3)^2]

  =1/2*(8+6+16)

  =15

  5.设n是自然数,且x>1,比较(√n+1)-√n和√n-(√n-1)的大小

  (√n+1)-√n=1/[√(n+1)+√n]

  √n-(√n-1)=1/[√n+√(n-1)]

  因为[√(n+1)+√n]>[√n+√(n-1)]

  所以1/[√(n+1)+√n]

2020-05-20 08:29:23

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •