来自任全的问题
动点P(x,y)在圆上动动,圆的x^2+y^2=1,证明(y+1)/(x+2)的最大值为4/3
动点P(x,y)在圆上动动,圆的x^2+y^2=1,证明(y+1)/(x+2)的最大值为4/3
1回答
2020-05-20 09:51
动点P(x,y)在圆上动动,圆的x^2+y^2=1,证明(y+1)/(x+2)的最大值为4/3
动点P(x,y)在圆上动动,圆的x^2+y^2=1,证明(y+1)/(x+2)的最大值为4/3
1:
P(x,y)在圆上动动,圆的x^2+y^2=1;
则(y+1)/(x+2)为过(-2,-1)和P点的斜率;
设(-2,-1)为Q,则当PQ与圆O相切取最大值,和最小值;
令(y+1)/(x+2)=k;
kx-y+2k-1=0;
OP=|2k-1|/√k^2+1=1;
|2k-1|=√(k^2+1)
(2k-1)^2=k^2+1;
3k^2-4k=0;
k(3k-4)=0;
k=0,或k=4/3;
所以(y+1)/(x+2)的最大值为4/3;