来自冯颖的问题
如图.在△ABC中,E是AB的中点,D是AC上的一点,且AD:DC=2:3,BD与CE交于F,S△ABC=40,求SAEFD.
如图.在△ABC中,E是AB的中点,D是AC上的一点,且AD:DC=2:3,BD与CE交于F,S△ABC=40,求SAEFD.
1回答
2020-05-23 00:36
如图.在△ABC中,E是AB的中点,D是AC上的一点,且AD:DC=2:3,BD与CE交于F,S△ABC=40,求SAEFD.
如图.在△ABC中,E是AB的中点,D是AC上的一点,且AD:DC=2:3,BD与CE交于F,S△ABC=40,求SAEFD.
取AD的中点G,并连接EG在△ABD中,E是AB的中点,由题知EG∥BD.又CD:DG=3:1,
从而,在△CEG中,CF:FE=CD:DG=3:1,
∴S△DFC:S△DFE=3:1.
设S△DEF=x,则S△DFC=3x,S△DEC=4x.
由于AD:DC=2:3,
∴S△EAD:S△ECD=2:3,
∴S△EAD=23