(线性代数追问)同维同个数向量组A,b等价能否推出其组成矩阵(m*n)列等价?问题是这样的:m维列向量组a1,a2……an,与m维列向量组b1,b2……bn等价,前一组组成矩阵A=(a1,a2……an),后一组组成矩阵B
(线性代数追问)同维同个数向量组A,b等价能否推出其组成矩阵(m*n)列等价?
问题是这样的:m维列向量组a1,a2……an,与m维列向量组b1,b2……bn等价,前一组组成矩阵A=(a1,a2……an),后一组组成矩阵B=(a1,a2……an),是否能推出矩阵A列等价于矩阵B?
我现在的问题是已知m维列向量组a1,a2……an,与m维列向量组b1,b2……bn等价,也就是ai(i=1,2……n)能用b1,b2……bn线性表示,bj(j=1,2……n)能用a1,a2……an线性表示,想证明:存在可逆矩阵Q,使得(b1,b2……bn)=(a1,a2……an)*Q.注意这里Q只要存在就行,比如@ldydc举例说a1T=(1,0,0),b1T=(3,0,0),b2T=(4,0,0),的确,存在不可逆阵M=(第一行3,4;第二行0,0)使得(b1,b2)=(a1,a2)*M,但同时也存在可以矩阵Q=(第一行1/3,0;第二行0,1/2)使得(b1,b2)=(a1,a2)*Q,成立,因此不能推翻原命题.(原命题即:m维列向量组a1,a2……an,与m维列向量组b1,b2……bn等价,前一组组成矩阵A=(a1,a2……an),后一组组成矩阵B=(a1,a2……an),则矩阵A列等价于矩阵B)
PS:之前感谢@ldydc对前一问题作出的深入分析,在下受益匪浅.