来自李绍荣的问题
设A,B为正定矩阵,证明A+B为正定矩阵.
设A,B为正定矩阵,证明A+B为正定矩阵.
1回答
2020-05-29 22:26
设A,B为正定矩阵,证明A+B为正定矩阵.
设A,B为正定矩阵,证明A+B为正定矩阵.
矩阵A是正定的等价于对于任意非零向量a,都有a'Aa>0;如果A、B都是正定的,那么对于任意非零向量a,都有a'Aa>0;a'Ba>0;显然对于任意非零向量a,就有a'(A+B)a>0;所以A+B也是正定的!只要你搞清一个等价关系就行了,最好...