【对伽利略斜面实验的深思伽利略说,若斜面光滑则小球将上升到相-查字典问答网
分类选择

来自李跃中的问题

  【对伽利略斜面实验的深思伽利略说,若斜面光滑则小球将上升到相同的高度,(同样符合各种能量守恒定律)但是若把斜面换成曲面,比如一个圆.那么它是上不了相同的高度的,因为圆圈的最高】

  对伽利略斜面实验的深思

  伽利略说,若斜面光滑则小球将上升到相同的高度,(同样符合各种能量守恒定律)

  但是若把斜面换成曲面,比如一个圆.那么它是上不了相同的高度的,因为圆圈的最高点(假设初始点高度等于直径)v最小要根号下gr,所以在某一处小球应该掉了下来,但是我们不能确定具体是哪个位置掉了下来,同理,如果不是一个圆,只是一个曲面,他是否能上升到和初始点(我认为是一定不能的,原理和圆一样)

  那么、、也就是说,要想伽利略实验成功,除了一定要斜面光滑,还要保证他一定要直,有一点点的曲率都是不可以的.

  对吧.

3回答
2020-05-31 13:49
我要回答
请先登录
刘晓娟

  不对

  我们可以这样理解

  我们想要验证机械能守恒,所以我们要求球一直在斜面上,而且在最高点速度要是零,这样才可以使动能完全转化为重力势能从而证明我们的结论.

  如果是个圆呢?那么,最高点速度不能是零,因为它有向心力,必须有速度与之对应,否则就不能在轨道上运动了.他的机械能依然守恒,只是实验观测不到而已

  那么对于任意曲面呢?只要是一个最高点速度可以是零的曲面就行了,也就是说,最高点可以没有向心力就行了.比如说四分之一圆轨道,或比四分之一短的圆轨道,这种情况下球不会脱离轨道,可以证明结论

  但若是一个比四分之一长的轨道呢?这样球在最高点所受向心力最小值是重力的一个分量,比必须有速度才能使球一直在轨道上运动,这种装置就不能证明机械能守恒

2020-05-31 13:53:12
李跃中

  你的意思就是说在小于1/4圆弧内,是一定可以达到的,但是大于1/4圆弧就与需要一定的速度了,是么?但是你说的理由我没有弄懂“这样球在最高点所受向心力最小值是重力的一个分量,比必须有速度才能使球一直在轨道上运动。”

2020-05-31 13:57:23
刘晓娟

  因为当大于四分之一圆弧时,支持力加上重力的径向分力提供向心力,也就是说,即使支持力为零,向心力也不可能为零,所以这一点的速度不可能为零

2020-05-31 13:58:58

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •