来自陈惠芳的问题
【已知f(x)=log3x+2(x∈[1,9]),则函数y=[f(x)]2+f(x2)的最大值是13.由f(x)的定义域为[1,9]可得y=[f(x)]2+f(x2)的定义域为[1,3],又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2-3,∵1≤x≤3,∴0≤】
已知f(x)=log3x+2(x∈[1,9]),则函数y=[f(x)]2+f(x2)的最大值是
13
.
由f(x)的定义域为[1,9]可得y=[f(x)]2+f(x2)的定义域为[1,3],
又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2-3,
∵1≤x≤3,∴0≤log3x≤1.
∴当x=3时,g(x)有最大值13.
13
1回答
2020-06-03 13:38