求初一上应用题.方程整式有理数运算各20道
求初一上应用题.方程整式有理数运算各20道
求初一上应用题.方程整式有理数运算各20道
求初一上应用题.方程整式有理数运算各20道
例1.某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒.问往返共需多少时间?
讲评:这一问题实际上分为两个过程:①从排尾到排头的过程是一个追及过程,相当于最后一个人追上最前面的人;②从排头回到排尾的过程则是一个相遇过程,相当于从排头走到与排尾的人相遇.
在追及过程中,设追及的时间为x秒,队伍行进(即排头)速度为90米/分=1.5米/秒,则排头行驶的路程为1.5x米;追及者的速度为3米/秒,则追及者行驶的路程为3x米.由追及问题中的相等关系“追赶者的路程-被追者的路程=原来相隔的路程”,有:
3x-1.5x=450∴x=300
在相遇过程中,设相遇的时间为y秒,队伍和返回的人速度未变,故排尾人行驶的路程为1.5y米,返回者行驶的路程为3y米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程=总路程”有:3y+1.5y=450∴y=100
故往返共需的时间为x+y=300+100=400(秒)
例2汽车从A地到B地,若每小时行驶40km,就要晚到半小时:若每小时行驶45km,就可以早到半小时.求A、B两地的距离.
讲评:先出发后到、后出发先到、快者要早到慢者要晚到等问题,我们通常都称其为“先后问题”.在这类问题中主要考虑时间量,考察两者的时间关系,从相隔的时间上找出相等关系.本题中,设A、B两地的路程为xkm,速度为40km/小时,则时间为小时;速度为45km/小时,则时间为小时,又早到与晚到之间相隔1小时,故有
-=1∴ x=360
例3一艘轮船在甲、乙两地之间行驶,顺流航行需6小时,逆流航行需8小时,已知水流速度每小时2km.求甲、乙两地之间的距离.
讲评:设甲、乙两地之间的距离为xkm,则顺流速度为km/小时,逆流速度为km/小时,由航行问题中的重要等量关系有:
-2=+2∴x=96
2.工程问题
工程问题的基本量有:工作量、工作效率、工作时间.关系式为:①工作量=工作效率×工作时间.②工作时间=,③工作效率=.
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为.常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量.②如果以时间作相等关系,完成同一工作的时间差=多用的时间.
在工程问题中,还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度.
例4.加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?
讲评:将全部任务的工作量看作整体1,由甲、乙单独完成的时间可知,甲的工作效率为,乙的工作效率为,设乙需工作x天,则甲再继续加工(12-x)天,乙完成的工作量为,甲完成的工作量为,依题意有+=1∴x=8
例5.收割一块麦地,每小时割4亩,预计若干小时割完.收割了后,改用新式农具收割,工作效率提高到原来的1.5倍.因此比预计时间提前1小时完工.求这块麦地有多少亩?
讲评:设麦地有x亩,即总工作量为x亩,改用新式工具前工作效率为4亩/小时,割完x亩预计时间为小时,收割亩工作时间为/4=小时;改用新式工具后,工作效率为1.5×4=6亩/小时,割完剩下亩时间为/6=小时,则实际用的时间为(+)小时,依题意“比预计时间提前1小时完工”有
-(+)=1∴x=36
例6.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水.现在三管齐开,需多少时间注满水池?
讲评:由题设可知,甲、乙、丙工作效率分别为、、-(进水管工作效率看作正数,排水管效率则记为负数),设x小时可注满水池,则甲、乙、丙的工作量分别为,、-,由三水管完成整体工作量1,有+-=1∴ x=5
3.经济问题
与生活、生产实际相关的经济类应用题,是近年中考数学创新题中的一个突出类型.经济类问题主要体现为三大类:①销售利润问题、②优惠(促销)问题、③存贷问题.这三类问题的基本量各不相同,在寻找相等关系时,一定要联系实际生活情景去思考,才能更好地理解问题的本质,正确列出方程.
⑴销售利润问题.利润问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率.基本关系式有:①利润=销售价(收入)-成本(进价)【成本(进价)=销售价(收入)-利润】;②利润率=【利润=成本(进价)×利润率】.在有折扣的销售问题中,实际销售价=标价×折扣率.打折问题中常以进价不变作相等关系.
⑵优惠(促销)问题.日常生活中有很多促销活动,不同的购物(消费)方式可以得到不同的优惠.这类问题中,一般从“什么情况下效果一样分析起”.并以求得的数值为基准,取一个比它大的数及一个比它小的数进行检验,预测其变化趋势.
⑶存贷问题.存贷问题与日常生活密切相关,也是中考命题时最好选取的问题情景之一.存贷问题中有本金、利息、利息税三个基本量,还有与之相关的利率、本息和、税率等量.其关系式有:①利息=本金×利率×期数;②利息税=利息×税率;③本息和(本利)=本金+利息-利息税.
例7.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同样商品40件.如果商店销售这种商品时,要获利12%,那么这种商品的销售价应定多少?
讲评:设销售价每件x元,销售收入则为(10+40)x元,而成本(进价)为(5×10+40×12.5),利润率为12%,利润为(5×10+40×12.5)×12%.由关系式①有
(10+40)x-(5×10+40×12.5)=(5×10+40×12.5)×12%∴x=14.56
例8.某种商品因换季准备打折出售,如果按定价七五折出售,则赔25元,而按定价的九折出售将赚20元.问这种商品的定价是多少?
讲评:设定价为x元,七五折售价为75%x,利润为-25元,进价则为75%x-(-25)=75%x+25;九折销售售价为90%x,利润为20元,进价为90%x-20.由进价一定,有
75%x+25=90%x-20∴x=300
例9.李勇同学假期打工收入了一笔工资,他立即存入银行,存期为半年.整存整取,年利息为2.16%.取款时扣除20%利息税.李勇同学共得到本利504.32元.问半年前李勇同学共存入多少元?
讲评:本题中要求的未知数是本金.设存入的本金为x元,由年利率为2.16%,期数为0.5年,则利息为