来自涂仁发的问题
(1)已知m^2+n^2=1,p^2+q^2=1,mp+nq=0,求证m^2+p^2=1,n^2+q^2=1,mn+pq=0(2)分解因式:(y-z)^5+(z-x)^5+(x-y)^5(3)求证:[(x+y+z)^3]xyz-(xy+yz+zx)^3=[(x^3)+(y^3)+(z^3)]xyz-[(xy^3)+(yz^3)+(zx^3)](4)求证:代数式(a^4)[(b^2+c^2-
(1) 已知m^2+n^2=1,p^2+q^2=1,mp+nq=0,求证
m^2+p^2=1,n^2+q^2=1,mn+pq=0
(2)分解因式:(y-z)^5+(z-x)^5+(x-y)^5
(3)求证:
[(x+y+z)^3]xyz-(xy+yz+zx)^3=
[(x^3)+(y^3)+(z^3)]xyz-[(xy^3)+(yz^3)+(zx^3)]
(4)求证:
代数式(a^4)[(b^2+c^2-a^2)^3]+(b^4)[(a^2+c^2-b^2)^3]+
(c^4)[(a^2+b^2-c^2)^3]
能被 代数式
a^4+b^4+c^4-2(a^2)(b^2)-2(b^2)(c^2)-2(c^2)(a^2)
整除.
1回答
2020-06-15 20:27