来自范子彦的问题
设函数f(x)=e^x-a(x+1)(a>0,e为自然对数的底数),若a>0,fx大于等于0对任意的x属于R恒成立.求实数a的最大值
设函数f(x)=e^x-a(x+1)(a>0,e为自然对数的底数),若a>0,fx大于等于0对任意的x属于R恒成立.求实数a的最大值
1回答
2020-06-17 10:40
设函数f(x)=e^x-a(x+1)(a>0,e为自然对数的底数),若a>0,fx大于等于0对任意的x属于R恒成立.求实数a的最大值
设函数f(x)=e^x-a(x+1)(a>0,e为自然对数的底数),若a>0,fx大于等于0对任意的x属于R恒成立.求实数a的最大值
f(x)=e^x-a(x+1)(a>0),则
f'(x)=e^x-a,
x>lna时f'(x)>0,f(x)↑;x