来自刘念的问题
已知实数k∈R,且k≠0,e为自然对数的底数,函数f(x)=k•exex+1,g(x)=f(x)-x.(1)如果函数g(x)在R上为减函数,求k的取值范围;(2)如果k∈(0,4],求证:方程g(x)=0有且有一个
已知实数k∈R,且k≠0,e为自然对数的底数,函数f(x)=k•exex+1,g(x)=f(x)-x.
(1)如果函数g(x)在R上为减函数,求k的取值范围;
(2)如果k∈(0,4],求证:方程g(x)=0有且有一个根x=x0;且当x>x0时,有x>f(f(x))成立;
(3)定义:①对于闭区间[s,t],称差值t-s为区间[s,t]的长度;②对于函数g(x),如果对任意x1,x2∈[s,t]⊆D(D为函数g(x)的定义域),记h=|g(x2)-g(x1)|,h的最大值称为函数g(x)在区间[s,t]上的“身高”.问:如果k∈(0,4],函数g(x)在哪个长度为2的闭区间上“身高”最“矮”?
1回答
2020-06-20 08:52