来自童勇木的问题
已知函数f(x)=(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.
已知函数f(x)=(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间.
1回答
2020-06-20 11:46
已知函数f(x)=(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.
已知函数f(x)=(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间.
(1)由题意得f′(x)=,又f′(1)==0,故k=1.(2)由(1)知,f′(x)=.设h(x)=-lnx-1(x>0),则h′(x)=--<0,即h(x)在(0,+∞)上是减函数.由h(1)=0知,当0<x<1时,...