已知a,b,c为正数,用排序不等式证明:2(a3+b3+c3-查字典问答网
分类选择

来自潘天红的问题

  已知a,b,c为正数,用排序不等式证明:2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).

  已知a,b,c为正数,用排序不等式证明:2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).

1回答
2020-06-20 17:47
我要回答
请先登录
雷海浜

  证明:先证明:a3+b3≥a2b+ab2,∵(a3+b3)-(a2b+ab2)=a2(a-b)-b2(a-b)=(a2-b2)(a-b)=(a+b)(a-b)2≥0,∴a3+b3≥a2b+ab2,取等号的条件是a=b,同理,a3+b3≥a2b+ab2,a3+c3≥a2c+ac2,b3+c3≥b2c+bc2...

2020-06-20 17:49:58

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •