来自胡理的问题
【如图,在△ABC中,AD,BE,CF是它的三条角平分线且交于点P,过点P作PQ⊥AC于点Q,试判断图中∠APE与∠CPQ的数量关系,并证明】
如图,在△ABC中,AD,BE,CF是它的三条角平分线且交于点P,过点P作PQ⊥AC于点Q,试判断图中∠APE与∠CPQ的数量关系,并证明
1回答
2020-06-22 17:59
【如图,在△ABC中,AD,BE,CF是它的三条角平分线且交于点P,过点P作PQ⊥AC于点Q,试判断图中∠APE与∠CPQ的数量关系,并证明】
如图,在△ABC中,AD,BE,CF是它的三条角平分线且交于点P,过点P作PQ⊥AC于点Q,试判断图中∠APE与∠CPQ的数量关系,并证明
∠APE=1/2∠A+1/2∠B
∠CPQ=90°-1/2∠C
∠A+∠B+∠C=180°
所以2∠CPQ=180°-∠C
2∠APE=∠A+∠B=180°-∠C
显然∠APE=∠CPQ