来自何希才的问题
设f'(sinx^2)=cos2x+tanx^2(0
设f'(sinx^2)=cos2x+tanx^2(0
1回答
2020-06-24 15:41
设f'(sinx^2)=cos2x+tanx^2(0
设f'(sinx^2)=cos2x+tanx^2(0
f'(sinx^2)=cos2x+tanx^2=1-2sinx^2+(sinx^2)/(1-sinx^2)
therefore
f'(x)=1-2x+x/(1-x)=1/(1-x)-2x
f(x)=-ln(1-x)-x^2