已知函数fx=(1+1/tanx)sin^x-2sin(x+-查字典问答网
分类选择

来自江英兰的问题

  已知函数fx=(1+1/tanx)sin^x-2sin(x+π/4)sin(x-π/4)1、若tana=2,求fx2、若x属于[π/12,π/2],求fx的取值范围(不要复制网页上的,

  已知函数fx=(1+1/tanx)sin^x-2sin(x+π/4)sin(x-π/4)

  1、若tana=2,求fx

  2、若x属于[π/12,π/2],求fx的取值范围

  (不要复制网页上的,

1回答
2020-06-24 14:52
我要回答
请先登录
黄小勇

  f(x)=(1+1/tanx)*(sinx)^2-2sin(x+π/2)sin(x-π/4)

  =(1+cosx/sinx)*(sinx)^2+2sin(x+π/4)cos[(x-π/4)+π/2]

  =(sinx)^2+sinxcosx+2sin(x+π/4)cos(x+π/4)

  =(sinx)^2+sinxcosx+sin(2x+π/2)

  =1/2*(1-cos2x)+1/2*sin2x+cos2x

  =1/2*sin2x+1/2*cos2x+1/2

  =√2/2*sin(2x+π/4)+1/2

  1,因为tanx=2

  所以sin2x=2tanx/[1+(tanx)^2]=4/(1+4)=4/5

  cos2x=[1-(tanx)^2]/[1+(tanx)^2]=(1-4)/(1+4)=-3/5

  所以f(x)=1/2*sin2x+1/2*cos2x+1/2

  =1/2*(4/5)+1/2*(-3/5)+1/2

  =4/10-3/10+1/2

  =3/5

  2,f(x)=√2/2*sin(2x+π/4)+1/2

  ∵π/12≤x≤π/2

  ∴π/6≤2x≤π

  ∴5π/12≤2x+π/4≤5π/4

  所以-√2/2≤sin(2x+π/4)≤1

  ∴0≤√2/2*sin(2x+π/4)+1/2≤(√2+1)/2

  即f(x)的取值范围为[0,(√2+1)/2]

2020-06-24 14:54:18

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •