1.两个式子分别平方:(sinx+siny)^2=(sinx)^2+2sinxsiny+(siny)^2=16/25
(cosx+cosy)^2=(cosx)^2+2cosxcosy+(cosy)^2=9/25
两式相加:(sinx)^2+(cosx)^2+2sinxsiny+2cosxcosy+(siny)^2+(cosy)^2=16/25+9/25
1+2sinxsiny+2cosxcosy+1=1
2(sinxsiny+cosxcosy)=-1
cos(x-y)=-1/2
2.[sin50+cos40*(1+tan60*tan10)]/(cos20)^2
={sin50+cos40*[1+(sin60sin10/cos60cos10)]}/(cos20)^2
={sin50+cos40*[(cos60cos10/cos60cos10)+(sin60sin10/cos60cos10)]}/(cos20)^2
={sin50+cos40*[(cos60cos10+sin60sin10)/(cos60cos10)]}/(cos20)^2
={sin50+cos40*[cos(60-10)/(cos60cos10)]}/(cos20)^2
=[sin50+(cos40cos50)/(cos60cos10)]/(cos20)^2
={sin50+[cos40cos(90-40)/(1/2)cos10]}/(cos20)^2
=[sin(90-40)/(cos20)^2]+[2cos40sin40/cos10*(cos20)^2]
=[(cos40)/(1+cos40)/2]+[(sin80)/cos10*(cos20)^2]
=[2cos40/(1+cos40)]+[sin(90-10)/cos10*(cos20)^2]
=[2cos40/(1+cos40)]+{(cos10)/cos10*[(1+cos40)/2]}
=(2cos40+2)/(1+cos40)
=2
3.(2cos^2a-1)/[2tan*(45-a)*sin^2(45+a)]
=(2cos^2a-1)/{2tan*(45-a)*[sin^2(90-(45-a)]}
=(2cos^2a-1)/[2tan*(45-a)*cos^2(45-a)]
=(cos2a)/[2sin(45-a)cos(45-a)]
=(cos2a)/[sin(90-2a)]
=(cos2a)/(cos2a)=1
4.cos(a+b)=cosacosb-sinasinb=1/3
cos(a-b)=cosacosb+sinasinb=1/6
两式相加:2cosacosb=1/2
两式相减:2sinasinb=-1/6
tana*tanb=(sinasinb)/(cosacosb)=-1/3
5.在三角形中:tanC=tan[π-(A+B)]=-tan(A+B)
根据正切的两角和公式,变形后得:tanA+tanB={[tan(A+B)]*(1-tanAtanB)}
展开:tanA+tanB=tan(A+B)-tan(A+B)tanAtanB
将tanC=-tan(A+B)代入上式:tanA+tanB=-tanC+tanCtanAtanB
整理后:tanA+tanB+tanC=tanAtanBtanC
在三角形中:A+B+C=π,则:A/2+B/2+C/2=π/2
tan(A/2)*tan(B/2)+tan(B/2)*tan(C/2)+tan(C/2)*tan(A/2)
=tan(A/2)[tan(B/2)+tan(C/2)]+tan(B/2)*tan(C/2)
={tan[π/2-(B/2+C/2)]}*{[tan(B/2+C/2)][1-tan(B/2)*tan(C/2)]}+tan(B/2)*tan(C/2)
=cot(B/2+C/2)*[tan(B/2+C/2)][1-tan(B/2)*tan(C/2)]+tan(B/2)*tan(C/2)
=1[1-tan(B/2)*tan(C/2)]+tan(B/2)*tan(C/2)
=1-tan(B/2)tan(C/2)+tan(B/2)*tan(C/2)
=1