设向量OA=(2sinx,cos2x),向量OB=(-cosx,1),其中x∈[0,π/2].(1)求f(x)=向量OA·向量OB的最大值和最小值(2)当向量OA⊥向量OB,求丨向量AB丨第一问我会啦,就是第二问求AB的时候向量AB=向量(OB-OA)=(-cosx-sinx,1-cos
设向量OA=(2sinx,cos2x),向量OB=(-cosx,1),其中x∈[0,π/2].
(1)求f(x)=向量OA·向量OB的最大值和最小值
(2)当向量OA⊥向量OB,求丨向量AB丨
第一问我会啦,就是第二问求AB的时候
向量AB=向量(OB-OA)=(-cosx-sinx,1-cos2x),
丨向量AB丨不是应该为√(-cosx-sinx)^2+(1-cos2x)^2么,为什么有好多答案都是
AB|=√[(-cosx-2sinx)^2+(1+cos2x)^2]这个样子的啊?