求三角函数知识点例题一、角的概念和弧度制:1.在直角坐标系内-查字典问答网
分类选择

来自顾小丰的问题

  求三角函数知识点例题一、角的概念和弧度制:1.在直角坐标系内讨论角2.与角终边相同的集合一些特殊角的集合表示3.区间角的表示4.通过角度来判定终边所在象限5.弧长公式的运用6.弧度制

  求三角函数知识点例题

  一、角的概念和弧度制:

  1.在直角坐标系内讨论角

  2.与角终边相同的集合

  一些特殊角的集合表示

  3.区间角的表示

  4.通过角度来判定终边所在象限

  5.弧长公式的运用

  6.弧度制

  二、任意角的三角函数

  1.任意角的三角函数定义

  2.画出角的正弦余弦正切线

  3.特殊角的三角函数值

  三、同角三角函数的关系与诱导公式:

  1.同三角函数的关系,平方关系、倒数关系、商式关系

  2.诱导公式同三角函数的关系及运用

  ①已知某角的一个三角函数值,求它的其余各三角函数值.

  ②求任意角的三角函数值.

  尽量在每一点后面写上例题,注明是哪一点,

1回答
2020-06-24 13:57
我要回答
请先登录
沈恩绍

  三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数.它们的本质是任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.另一种定义是在直角三角形中,但并不完全.现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系.它包含六种基本函数:正弦、余弦、正切、余切、正割、余割.由于三角函数的周期性,它并不具有单值函数意义上的反函数.三角函数在复数中有较为重要的应用.在物理学中,三角函数也是常用的工具.目录[隐藏]定义基本公式同角三角函数关系式恒等变形公式诱导公式相关计算相关概念三角形与三角函数定义域和值域初等三角函数导数倍半角规律反三角函数高等数学内容定义基本公式同角三角函数关系式恒等变形公式诱导公式相关计算相关概念三角形与三角函数定义域和值域初等三角函数导数倍半角规律反三角函数高等数学内容

  [编辑本段]定义它有六种基本函数(初等基本表示):

  在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

  正弦函数sinθ=y/r

  余弦函数cosθ=x/r

  正切函数tanθ=y/x

  余切函数cotθ=x/y

  正割函数secθ=r/x

  余割函数cscθ=r/y

  (斜边为r,对边为y,邻边为x.)

  以及两个不常用,已趋于被淘汰的函数:

  正矢函数versinθ=1-cosθ

  余矢函数coversθ=1-sinθ

  正弦(sin):角α的对边比上斜边

  余弦(cos):角α的邻边比上斜边

  正切(tan):角α的对边比上邻边

  余切(cot):角α的邻边比上对边

  正割(sec):角α的斜边比上邻边

  余割(csc):角α的斜边比上对边[编辑本段]基本公式同角三角函数关系式

   ·平方关系:

  (sinx)^2+(cosx)^2=1

  1+(tanx)^2=(secx)^2

  1+(cotx)^2=(cscx)^2

  ·积的关系:

  sinα=tanα×cosα

  cosα=cotα×sinα

  tanα=sinα×secα

  cotα=cosα×cscα

  secα=tanα×cscα

  cscα=secα×cotα

  ·倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  直角三角形ABC中,

  角A的正弦值就等于角A的对边比斜边,

  余弦等于角A的邻边比斜边

  正切等于对边比邻边,

  对称性

  180度-α的终边和α的终边关于y轴对称.

  -α的终边和α的终边关于x轴对称.

  180度+α的终边和α的终边关于原点对称.

  180度/2-α的终边关于y=x对称.

  恒等变形公式

   ·两角和与差的三角函数:

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  ·三角和的三角函数:

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  ·辅助角公式:

  Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A)),其中

  sint=B/√(A²+B²)

  cost=A/√(A²+B²)

  tant=B/A

  Asinα-Bcosα=√(A²+B²)cos(α-t),tant=A/B

  ·倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα+cotα)

  cos(2α)=(cosα)^2-(sinα)^2=)=2(cosα)^2-1=1-2(sinα)^2 

  tan(2α)=2tanα/(1-tan²α)

  ·三倍角公式:

  sin(3α)=3sinα-4sin³α=4sinα·sin(60°+α)sin(60°-α)

  cos(3α)=4cos³α-3cosα=4cosα·cos(60°+α)cos(60°-α)

  tan(3α)=(3tanα-tan³α)/(1-3tan³α)=tanαtan(π/3+α)tan(π/3-α)

  ·半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1+cosα)/2)

  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

  ·降幂公式

  sin²α=(1-cos(2α))/2=versin(2α)/2

  cos²α=(1+cos(2α))/2=covers(2α)/2

  tan²α=(1-cos(2α))/(1+cos(2α))

  ·万能公式:

2020-06-24 14:02:00

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •