来自卢肇川的问题
如图,AB是圆O的直径,点C是圆O上一点,CD丄于D,点E是圆0上一点,且∠ACE=2∠BCD,连AE若BD=1AE=4求圆的半径
如图,AB是圆O的直径,点C是圆O上一点,CD丄于D,点E是圆0上一点,且∠ACE=2∠BCD,连AE若BD=1AE=4求圆的半径
1回答
2020-06-26 22:47
如图,AB是圆O的直径,点C是圆O上一点,CD丄于D,点E是圆0上一点,且∠ACE=2∠BCD,连AE若BD=1AE=4求圆的半径
如图,AB是圆O的直径,点C是圆O上一点,CD丄于D,点E是圆0上一点,且∠ACE=2∠BCD,连AE若BD=1AE=4求圆的半径
1、延长CO与AE交于F,连结EO,
∵AB是直径,
∴〈ACB=90°,
∵〈CDB=90°,
∴〈CAB=90°-〈CBA,
∴〈BCD=90°-〈CBA,
∴〈CAB=〈BCD,
∵〈BCD=〈ACE/2,
∴〈CAB=〈ACE/2,
∵AO=CO=R,
∴〈OAC=〈OCA,
∴〈ACE=2〈ACO,
∴CO是〈ACE的平分线,
∵CO=OE=R,
∴〈OEC=〈OCE=〈ACO=〈CAO,
∵AO=EO=R,
∴〈OAE=〈OEA,
∴〈CAE=〈CEA,
∴△CAE是等腰△,
∵FC是顶角〈ACE的平分线,
∴CF⊥AE,(等腰△三线合一).
2、∵〈BCD=〈ACF,
〈CDB=〈CFA=90°,
∴RT△CDB∽RT△CFA,
∴BD/AF=BC/AC,
AF=AE/2=2,
∴BC/AC=1/2,
设BC=x,AC=2x,AB=√5x,
∵〈CBD=〈ABC,(公用角)
〈CDB=〈ACB=90°,
∴RT△CBD∽RT△ABC,
∴BD/BC=BC/AB,
1/x=x/√5x,
x=√5,
AB=√5*√5=5,
∴半径R=AB/2=5/2.